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Abstract. The shape of the boundary of the geomagnetic field in a mlar wind has been 
calculated by a self-consistent method in which, in first order, approximate magnetic fields 
are used to calculate a boundary surface. The electric currents in this boundary produce mag- 
netic fields, which can be calculated once the first surface is known. These are added to the 
ciipoie fieid to  give more accurate fields, which are then used to compute a new surface. This 
iterative procedure converges rapidly, and the final surface may be tested by finding how 
close the total fields outside the boundary are to the required value of zero. The result of this 
stringent test is that the magnetic fields in the plasma outside the fourth surface and within 
twice the distance to the boundary on the solar side are everywhere less than 1 per cent of 
the geomagnetic dipole field in the absence of a solar wind. This surface has been used to 
calculate the perturbation of the geomagnetic field by the solar wind; the results of these 
calculations, plus a number of applications, are given in an accompanying paper. fia r h e L  

INTRODUCTION 
The geomagnetic dipole has been observed to 

be immersed in a continuous plasma stream 
emanating from the sun [hTeugebauer and Sny- 
der, 1962; Freeman et al., 1963; Bonetti et d., 
19631. Although small magnetic fields are pres- 
ent in the solar plasma [Coleman et al., 19621, 
they only serve primarily to ‘tie’ different re- 
gions of the plasma together. The foremost 
feature of the solar plasma stream is the stream 
pressure it exerts on any obstruction it en- 
counters. Such an obstruction is furnished by 
the geomagnetic field, which holds off the stream 
and creates a cavity from which the solar 
plasma is excluded [Chapman and Ferraro, . 1931; Dungey, 1958; Cahill and Amazeen, 
19631. 

The weak interplanetary magnetic field im- 
‘ bedded in the plasma has little effect on the 

pressure conditions on the solar side of the 
earth. (We believe that this field is compressed 
against the boundary of the geomagnetic field 
[Beard, 19Ma], and the pressure on the bound- 
ary may be essentially independent of the ex- 
istence of an interplanetary field; in any case, 
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the particle pressure will change by only a rela- 
tively constant factor, less than 2.) On the mti- 
solar side of the earth, however, the interplane- 
tary field becomes the predominant consideration 
in determining the closure of the cavity. Just how 
the cavity does close on the antisolar side is a 
very difficult problem, whose solution must 
await a better knowledge of the interplanetary 
magnetic field and the theory of plasma motion 
in the presence of trapped magnetic fields. For- 
tunately, the electric currents existing on the 
boundary on the antisolar side are very weak 
and relatively distant from the earth’s surface, 
compared with the solar-side boundary. There- 
fore, our understanding of the solar-side-bound- 
ary shape and the distortion of the geomagnetic 
field does not depend very much on whether 
an interplanetary field is included in our con- 
siderations, and so there appears to be adequate 
justification for simplifying the problem by 
assuming the solar wind to be free from mag- 
netic field and at  zero temperature (no lateral 
motion of the ions perpendicular to the stream 
velocity occurs). 

Several attempts have been made recently 
to calculate the shape of the boundary under 
the assumptions of a field-free, zero-temperature 
plasma specularly reflected from the boundary 
[Beard, 1960; Beard, 1962; Beard and Jenkins, 
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1962; Spra'ter and Briggs, 1962; Midgley and 
Davis, 19631. All have assumed certain approxi- 
mations that limit their accuracy. The best of 
them is the solution presented by Midgley and 
Davis, which will be compared with ours below. 
Slutz [I9631 has obtained a solution to a prob- 
lem with somewhat different boundary condi- 
tions a t  the interaction surface. Beard [ 196431 
has recently reviewed all the calculations made 
to  date. Other recent reviews of the solar wind- 
earth interaction have been written by Chap- 
m a n  [1963, pp. 371, 4211, Hines [1963], and 
Blum [ 19631. 

A new calculation of the boundary of the 
geomagnetic field, using a self-consistent method, 
is presented in this paper. The self-consistent 
method has been introduced previously [Beard, 
1962; Beard and Jenkins, 19G2] to illustrate the 
convergence of the particular approximation to 
the boundary conditions ordinarily used in the 
calculation. The accuracy and convergence of 
the self-consistent method have been illustrated 
for a variety of simple problems by Baker e t  al. 
[1964], who have found that the second- or 
third-order approximation is indistinguishable 
from the exact solution of problems for which 
analytic solutions exist. 

The method consists of using an approximate 
magnetic field in the differential equations rep- 
resenting the boundary conditions, from which 
a first-approximation boundary surface may be 
computed. From the surface currents on this 
first surface a correction field due to the surface 
curvature may then be determined which is 
added to the dipole field to give a better ap- 
proximation t o  the magnetic field just inside the 
boundary. This more accurate field is then used 
to determine a second surface, and the process 
is continued. It is found that, by the time the 
third surface is calculated by this method, neg- 
ligible improvement over the previous surface 
is obtained. Magnetic fields due to the surface 
currents computed within the plasma, outside 
the magnetosphere, are almost everywhere found 
to be within a few parts in a thousand of can- 
celing the geomagnetic dipole field alone a t  
each point, and thus the plasma is essentially 
field-free, as required by the boundary condi- 
tions. Such excellent cancellation of the field 
within the plasma leads us to believe that the 
calculation of the geomagnetic field boundary 
presented here is everywhere accurate to  less 

' 

than 1 per cent, within the assumptions made 
about the model and the interplanetary medium. 

METHOD OF CALCULATION OF THE 

BOUNDARY 
With the assumptions of a 

zero-temperature, field-free plasma incident per- 
pendicular to  the geomagnetic dipole and under- 
going specular reflection, the boundary shape 
may be determined by equating the stream 
pressure of the ions on one side of the boundary 
to the magnetic field pressure on the other side 
[Chapman and Ferraro, 1931; Ferraro, 1952; 
Spitzer, 1956; Dungey, 1958; Beard, 19601 : 

Basic equations. 

1 
p = 2nmv2 cos' + = Bt2/Sn (1) 

where n is the ion density in the solar wind, m is 
the ion mass, u is the stream velocity, + is the 
angle between the outward vector normal to the 
boundary and the stream velocity vector, and 
B,  is the total magnetic ficld intensity just inside 
the boundary. If ii, represents the unit outward 
vector normal to the surface, cos + = xi:?, B, 
must be tangential to the surface, and (1) may 
be rewritten [Davis and Beard, 19621 

[A, X B,I = -(16xnmv')"2ii...? (2) - 
where 6 is the unit vector in the direction of the 
stream velocity. The minus sign is necessary 
when the square root is taken, since + must 
always be greater than 90' in order that the 
boundary surface may be everywhere exposed to 
the stream pressure. 

Equations 1 and 2 are equivalent only if the 
total field B, is rcally tangential to the boundary. 
The approximation for B, used to calculate a 
first surface is definitely not tangential. However, 
one test of the self-consistent method is to 
determine the extent to which the modified B, 
calculated in higher approximations is actually 
tangential to the surface. The results of this test 
will be given in the section on results. 

The total magnetic field just inside the bound- 
ary, B,, may be considered to be composed of 
three parts: (1) the geomagnetic dipole field a t  
that point, Bo; (2) a surface current planor field, 
B,, equal to the field produced by an infinite 
plane sheet of current tangential to the surface; 
and (3) a surface current field resulting from the 
curvature of the surface, B,, calculated at a 
position at the center of the surface currents. 
Thus the field just inside the surface due to the 
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Fig. 1. Coordinate system used in the calcula- 
tion. Note that the polar axis points toward the 
sun, instead of the north star. 

surface currents is BD + B,, and the total field 
at that point is 

Bt = B, + B, + Bc (3) 

If we assume that the boundary is infinites- 
imally thin, and move to a position just outside 
the boundary, B, and B, are unchanged but B, 
changes sign, and 

Boutmids = B g  - BD Bc = 0 (4)  

since it has been assumed that the plasma is 
field-free. Thus 

BD = B, + Bc 

Bi = 2(Bg + BJ 

(5) 

(6) 
and (2) becomes 

Id, X (B,-.+ B,)] = - ( 4 m m )  n,-$ (2') 

where thus far no approximations have been 
made. 
Calculation of the Jirst-approximation boundary 

surface. The curvature field B, cannot be 
determined until we have a first surface, but the 
first surface cannot be obtained without knowing 
the field. A reasonable first approximation con- 
sists of ignoring the curvature field and solving 
(2') for B, = 0. This is equivalent to assuming 
that the field just inside the surface is equal to 
twice the component of the geomagnetic field 
tangential to the boundary [Beard, 1960; Spreitm 

2 1 / 2 -  

and B+gs, 19621 

lBtl 2 Ifis X BgI (7) 
The c o o r d i t e  system used in the calculation 

is illustrated in Figure 1. Spherical coordinates 
are used, but, instead of the usual orientation, 
the polar or z axis is antiparallel to the solar 
plasma stream, the y axis points north, and the 
angle 4 is measured from the magnetic equa- 
torial plane. In this coordinate system 

+ =  - ~ e ? + s i n e 6  (9) 

B, = (M/ t3) ( -2  sin 6 sin 4t 

+ C O ~  e sin 46 + +$) (10) 

where the surface is defined by r = R(6, $), B, 
is the geomagnetic dipole field with magnetic 
moment M, and a is a normaliziig factor that 
makes il. a unit vector. Since fi, appears on both 
sides of (2'), this factor cancels out of the 
equation. 
In performing the calculations, all distances 

are expressed in units of 

ro 3 ( M 2 / 4 m m 2 ) 1 ' 6  (1 1) 

This is a convenient unit of distance, since it 
represents the altitude of the subsolar point in 
6he first approximation surface, where the field 
at that point is assumed to be twice the dipole 
field. When r is expressed in these units, the 
constant factor under the square root sign in  
(2') is removed, which makes all quantities 
dimensionless. B, is then in units of M/rOa. 

When equations 8, 9, and 10 are substituted 
into 2', a complicated nonlinear, partial differ- 
ential equation in two unknowns, 0 and +, 
results. A Newton-Raphson technique was used 
with the aid of an IBM 7094 computer to solve 
this equation for the entire three-dimensional 
surface. The surface was divided into a grid of 
5" increments in 6 and 4. It was necessary to 
determine only a fourth of the entire surface, 
since the remainder is completely symmetric. 
The solution starts at the subsolar point, where, 
because of symmetry, aR/a 0 and aR/at$ are zero. 
With this simplification, (2') can be directly 
solved for r at the subsolar point, giving 

r,, = (1 - B,J"a (12) 
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in dimensionless units. For the first surface 
Be = 0, and therefore r,, = r0 as indicated 
earlier. 

To obtain the complete surface, the computer 
moves out from the subsolar point, first along 
the equator (4 = 0") in 5" increments of 0. 
On the equator aR/a+ = 0 because of symmetry. 
At each point the computer makes a first guess 
at a value of T .  Then aR/aO is determined by 
fitting a parabola to this point plus the previous 
two computed points and finding the slope. 
These values of r and aR/a 0 are substituted into 
(2'), and the difference between the two sides of 
the equation is computed. In  general, this 
difference will not be precisely zero, since the 
first guess was not exactly correct. A small 
variation is made in r, and the new values of r 
and aR/a 0 are used to calculate a new difference. 
If r l  and r2 are the two trial values, d l  and d2  
are the resulting differences, and the variations 
are small enough so that the differences depend 
linearly on r in this region, then the 'correct' 
value is 

r3 = (dzri - dirz)/(& - 4) (13) 

In practice, ra is used as a new guess, another 
variation is made, smaller than the preceding one, 
and the process is repeated. The procedure con- 
tinues until r is obtained to the desired degree 
of accuracy. I n  the present case an accuracy of 
10-7 was required. Since the method is rapidly 
convergent, this accuracy was achieved with only 
two or three variations at each point. 

After points on the equator are mapped out, 
+ is increased by 5" and the process is continued. 
Now aR/a+ is no longer zero and must also be 
determined a t  each point in the same fashion as 
aR/aO by using the trial value of r plus the 
points immediately adjacent in 4. By this process, 
the entire three-dimensional surface can be 
mapped out with great accuracy. The computer 
takes only about 15 seconds to generate a com- 
plete surface. The basic subroutine that keeps 
track of all the variations was dubbed Maze, 
because of the multitude of decisions which it 
has to make. 

The next 
step in the self-consistent method is to use this 
first surface to compute B,, the additional mag- 
netic field due to the curvature of the surface 
[Beard, 19621. This is done by integrating over 
all the surface currents, using the Biot-Savart law 

Calculation of the curvature field. 

where J is the surface current per unit length of 
surface (emu/sec/cm) and r' is the vector from 
the differential surface element dS to the point r, 
which is taken to be a t  the center of the surface 
currents. This curvature field would be identically 
zero if the surface were a plane. 

The direction and magnitude of J are easily 
obtained, since the boundary is infinitesimally 
thin and the current must produce a field dis- 
continuity B, = 4irJ. Since B,, J, and ii, must 
be mutually perpendicular, (2) and (11) yield 

M 
= --x cos $j (15) 

where j is a unit vector in the direction of 
n, X B,. For purposes of machine computation, 
the expression used for the curvature field was 

where the value of (Bo + B,) is the previous 
approximation value taken at  the position of the 
surface element dS. Thus Bc(r') in the integrand 
of (16) is assumed zero in computing B,(r) for 
the second-order approximation. 

The machine calculation of B, must be per- 
formed with care, since a local singularity exists 
in (16) as r' + 0. This is a finite singularity, 
however, since, as the surface in the neighborhood 
of r approaches a plane, contributions to the 
curvature field from symmetric surface elements 
on opposite sides of r tend to cancel each other. 
A 5" mesh size was used in the numerical inte- 
gration, and contributions to the integral were 
included from every point up to within 5" of 
0 and +. The region within 5" was excluded. 
This resulted in an estimated error of less than 
5 per cent in computing the curvature field. An 
additional inaccuracy exists in regions near the 
polar axis of the coordinate system (i.e., near the 
subsolar point), because the grid in these regions 
is not very rectangular; therefore the cancella- 
tions near the singularity are not as complete. 
At the subsolar point itself the symmetry is 
restored, and the value of B, calculated here is 
accurate. The values of Bo in the region from 

~ 

' 
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2D t 
Fig. 2. Comparison of the first-approximation surface, the fourth-approximation surface, and 

the surface obtained by Midgley and Davis [19631, in the meridian and equatorial planes. 

0 = 5" to 8 = 35" were therefore not calculated 
directly, but quadratic interpolations were made 
for t,he t.hree components from 0 = 0' to 0 = 40°, 
where the grid was reasonably rectangular. Since 
the calculation of (16) was quite lengthy, compu- 
tation time was shortened by computing B, for 
every 10' in 0 and every 15" in 4, and then 
quadratically interpolating to obtain values a t  
intermediate points. In this way the process of 
determining the curvature field over the whole 
surface took about 6 minutes on the IBM 7094. 

A second surface can now be calculated from 
(2') by using the curvature fields from the first 
surface. A new set of curvature fields is then 

' 

computed, and this process is continued until 
the changes from one surface to the next are 
negligible. One test of the convergence of this 
method is to see how much B, changes from one 
surface to the next. It was found that the 
curvature fields calculated from the first surface 
averaged about 20 per cent of the dipole field in 
the equatorial regions but were actually larger 
than the dipole field in many regions near the 
poles. The curvature fields from the second 
surface were about 5 per cent different, on the 
average, from those based on the first surface. 
The third-surface fields changed by 1 or 2 per 
cent in the equatorial regions and about 5 per 
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Fig. 3. Intersection of the fourth-approximation surface with planes of constant I$. The 
surface at $J = 15" is not shown, since it is almost indistinguishable from the equatorial surface. 
N is the position of the null point in the noon meridian. 

cent near the poles. After this, the changes in 
the curvature fields were almost everywhere less 
than 1 per cent. 

RESULTS 
The intersection of the first-approximation 

surface with the equatorial plane and with the 
noon-midnight meridian plane is shown as a 
dashed line in Figure 2. The trace in the equa- 
torial plane is identical to that calculated by 
Beard [1960]. The trace in the meridian plane 
is also the same ( r  = constant = ro) to within 
about 20" of the pole on the day side. Past that 
point, it  corresponds essentially to  the solution 
given by Beard, in his equations 27 and 38, but 
using the integration constant of Spreiter and 
Bn'ggs [1962]. The Newton-Raphson method 
could not give a complete first surface in the 
meridian plane (4 = go"), where aR/a+ = 0 
because of symmetry. The surface shown is 
actually a smooth continuation of the surface 
determined a t  adjacent values of 4 = 80" and 

4 = 85", which the computer had no difficulty 
in calculating. In  higher orders, when the curva- 
ture fields are used in the meridian plane, the 
difficulty in determining a surface is no longer 
present, although the shape of the surface 
changes rapidly in the vicinity of the null point. 

A second surfacc is generated by calculating 
the curvature fields from the first surface and 
using them in (2'). This surface is about 7 per 
cent farther out everywhere in the equatorial 
plane. In  the meridian plane, the second surface 
is outside the first surface near the equator, 
inside near the pole, and slightly outside again 
in the distant antisolar regions. 

The third and fourth surfaces differ from the 
second by less than 0.5 per cent everywhere 
near the equator and therefore are graphically 
indistinguishable from the second surface in this 
region. In  the polar regions the differences are 
somewhat greater, the fourth surface differing 
from the third by as much as 1 per cent. A fifth 
surface has been calculated; it is intermediate 

, 

' 
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further than a fifth surface, because the change 
in the curvature fields from surface to surface 
was already much less than the accuracy with 
which these fields are calculated. 

The effect of the higher-order approximations 

between the third and the fourth. Every in&- 
cation suggests that the process converges very 
rapidly, and that any number of additional sur- 
faces could be generated with essentially no 
further change. The process was not carried 

Fig. 4. A view of the magnetopause from the position of the sun. Each curve represents a 
crow sect-Jn of the surface at constant e. The surface becomes almost cylindrical in the distant 
antisolar regions. 

TABLE 1. Coordinates of the Fourth Surface in Units of ro (15" intenah) 
4 = 0" represents the equator, and 4 = 90" is the noon-midnight merid&. 

+ =  0" 15" 30" 45 O 60 " 75 90" 

e = oo 
15" 
30 a 

45 O 

60 " 
75 " 
90 

105" 
120" 
135" 
150" 
165" 

1.068 
1.076 
1.099 
1.142 
1.209 
1.307 
1.450 
1.663 
1.998 
2.574 
3.747 
7.304 

~~ 

1.068 1.068 
1.075 1.074 
1.096 1.090 
1.136 1.123 
1.201 1.180 
1.297 1.272 
1.440 1.416 
1.656 1.638 
1.994 1.989 
2.576 2.586 
3.757 3.788 
7.330 7.405 

1.068 
1.071 
1.081 
1.103 
1.146 
1.229 
1.375 
1.610 
1.978 
2.595 
3.820 
7.482 

1.068 1.068 
1.069 1.068 
1.072 1.065 
1.079 1.059 
1.102 1.054 
1.168 1.088 
1.319 1.245 
1.571 1.522 
1.959 1.928 
2.594 2.574 
3.838 3.824 
7.529 7.512 

1.068 
1.067 
1.062 
1.051 
1.028 
1.001 
1.172 
1.479 
1.898 
2.549 
3.795 
7.461 
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TABLE 2. Coordinates of the Surface near 
the Null Point (5" intervals) 

( o =  70" 75" 80" 85" 90" 

e = 60" 1.069 1.054 1.041 1.031 1.028 
65" 1.076 1.057 1.037 1.021 1.016 
70" 1.091 1.066 1.039 1.012 1.003 
75" 1.116 1.088 1.054 1.014 1.001 
80" 1.154 1.125 1.090 1.046 1.032 
85" 1.206 1.178 1.145 1.105 1.091 
90" 1.271 1.245 1.217 1.183 1.172 

can be seen in Figure 2, which shows the fourth 
surface plotted along with the first surface in 
the two planes of symmetry, 9 = 0" (equator) 
and 4 = 90" (meridian). Figure 3 shows the 
complete three-dimensional fourth surface, giv- 
ing the shape a t  intermediate values of 9. Fig- 
ure 4 shows the cross sect,ion of the surface a t  

constant values of 0, i.e., the approximate in- 
tersection of the surface with planes perpendic- 
ular to  the earth-sun line. Here the behavior 
near the null point can be clearly seen. At very 
large distances on the dark side, near 0 = 180", 
the cross section is almost circular, with a merid- 
ional diameter of 3.88r0 and an equatorial diam- 
eter of 3.78r0. Thus, if the solar wind were truly 
field-free and at zero temperature, and if the 
boundary were a t  10 earth radii a t  the subsolar 
point, where T = 1.068r0, the diameter of the 
approximately cylindrical surface cross section 
a t  large distances on the dark side would be 
about 36 earth radii. 

The null point in the meridian plane is a t  a 
geomagnetic latitude of 72", i.e., 18" from the 
pole, and on the sunward side. The coordinates 
of the fourth surface are given in Tables 1 
and 2. 

' 

Fig. 5. A model of the magnetopause, based on the fourth-approximation surface. Some of 
the field lines in the noon-midnight meridian plane are shown. 
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Fig. 6. The distance to the boundary along the 
earth-sun line as a function of solar wind param- 
eters. v is the plasma velocity, and nef f  = nprotoo + 4 I t* lph l  is the effective ion density. . 

A model was constructed in order to visualize 
the complete surface. Templates of the surface 
for every 15" interval in were used to cut out 
aluminum sections, and these sections were 
joined together as shown in Figure 5. A small 
sphere with radius T&O was placed at  the posi- 
tion of the earth. A few of the calculated field 
lines in the noon-midnight meridian are also 
shown. 

In the present analysis, the solar wind inten- 
sity affects the size but not the shape of the 
magnetopause. Once the distance to the bound- 
ary along the earth-sun line is fixed, all other 
dimensions are determined. This distance, ra, 
given by 1.068 ( M P / 4 r  nmuZ)"", is plotted in 
Figure 6 as a function of solar wind parameters. 

A very stringent test of any proposed plasma- 
magnetic field boundary, given by Midgley and 
Dwis [1963], is to compute the magnetic field a t  
various points outside the magnetosphere as the 
sum of the field due to surface currents plus the 
dipole field, and compare this field with the 
undisturbed dipole field a t  each point. We have 
computed the field a t  r = 1 . 5 ~ ~  and 2 . 0 ~ ~  in 
intervals of 15O everywhere on the solar side of 
the surface. We find that the ratio of the computed 
total fietd in  ule plasma to the dipole jield ai every 

' 
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point is kss UEan 1 per cent, usually a few tenths 
of a per cent. Farther out from the surface the 
surface current field falls off as l/r*, and at 
r = l O T 0  the total field is everywhere less than 
3 per cent of the dipole field. It is believed that 
better accuracy could be obtained by improving 
the calculation of B,, but this is not justified in 
view of the changes introduced by the presence 
of a weak interplanetary magnetic field and time 
fluctuations in the solar wind pressure. 

Another test that can be made is to determine 
the exknt to which the total computed field just 
inside the boundary, B,, is tangential to the 
surface at every point. This was done in two 

the component of the field tangential to the 
surface to the total field, was calculated a t  each 
point. This ratio must be unity if (1) and (2) 
are really equivalent. Over most of the surface. 
this ratio was greater than 99.9 per cent; it was 
greater than 99 per cent everywhere except 
within 20" of the null point and within 30" of 
the antisolar point. It was greater than 90 per 
cent to within 10" of the null point and the 
antisolar point. At these two points, of course, 
the total field is zero and the ratio is inde- 
terminate. 

Second, the final surface was recomputed using 
lBtl instead of In, X B,/ to represent the mag- 
netic pressure. The surfaces differed by less than 
1 part in lo00 except near the null point and the 
antisolar point, where changes of as much as 
1 or 2 per cent were noted. 

The fourth surface was compared with the 
calculation recently published by Midgley and 
Davis [1963]. In order to plot on the same scale, 
their basic unit of length, R,, must be compared 
with r0. From their equation 5.3 

nm-m ..uJo. Z':--b 2'u3Li, 16, X Zti/iBti , i.e., the ratio of 

Rx3 = - ( ~ ~ / S l l ' ) ( ~ / r n n y 2 ) " *  (17) 

with Sl11 = -7.0030, whereas from our equa- 
tion 11 

rO3 = ( M / 2 ~ ) ( ~ / m n v ~ ) " ~  (18) 

so that 

RN = ( 2 ~ / 7 . 0 0 3 0 ) " ~ ~ ~  = 0 . 9 6 4 5 ~ ~  (19) 

The tabular values for Midgley and Davis' 
'smoothed' surface were multiplied by the above 
factor and plotted in Figure 2 as a dotted line. 
It is seen that their surface is actually slightly 
inside even the fir&-approximation surface in 
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the region of the subsolar point, as they have 
also noted. The fraction of the field just inside 
the surface contributed by the dipole field can 
be obtained from (2) and (11). At the subsolar 
point 

B,  = (161nmv2)"a = 2M/r:  (20) 
and thus 

From Midgley and Davis' surface, r,. = 0.981ro, 
and therefore 53 per cent of the field is contrib- 
uted by the dipole. For our surface, r,. = l.068ro 
and 41 per cent of the field is contributed by the 
dipole. With a plane or spherical boundary, the 
exact figures are 50 and 33 per cent, respectively. 
We feel certain that the dipole must produce 
less than half of the total field just inside the 
boundary, and that therefore the true surface 
must be larger than r0 a t  that point. I n  other 
words, the curvature field B, adds to the dipole 
field at the subsolar point rather than opposes it. 

Midgley and Davis' surface moves out more 
rapidly than our fourth surface away from the 
subsolar point, and for all values of 0 greater 
than about 60" the two surfaces are very close 
together. Midgley and Davis determine the null 
point to be 15" from the pole as opposed to 18" 
for our surface. 

CONCLUSIONS 
The surface boundary between the solar wind 

and the geomagnetic field has been calculated 
by a self-consistent method in which, in first 
approximation, the magnetic field resulting from 
the electric currents on the boundary has been 
approximated by treating the radius of curva- 
ture of the boundary surface as infinite. I n  
succeeding approximations the magnetic field 
resulting from the currents on the boundary is 
computed by integration over the preceding 
surface and used to calculate a new surface. 
The method converges rapidly, with an ultimate 
precision limited by the precision with which 
the magnetic fields are computed. The t,hird 
and fourth surfaces are almost indistinguish- 
able from the second. The first and fourth ap- 
proximations have been compared with Midgley 
and Davis' results and are illustrated in Fig- 
ure 2.  The final result, the fourth-approxima- 
tion surface, is shown in more detail in Figures 

3 and 4. A model of the surface is pictured in 
Figure 5. The accuracy of the fourth-approxi- 
mation surface may be tested by computing the 
magnetic field outside the boundary (inside the 
plasma), which should be zero in the absence of 
an interplanetary magnetic field. The ratio of 
this computed field to the geomagnetic dipole 
field out to r = 2r, in the plasma region is 
everywhere less than 1 per cent and of the order 
of 0.1 per cent in most cases. The computed 
field just inside the surface used to  balance the 
particle pressure is found to be tangential to 
the surface except near the null point and in 
the distant antisolar regions. 

These last tests are such stringent require- 
ments on the solution and are so well satisfied 
by the final results that we believe this solution 
to the theoretical problem (a magnetic dipole 
in a magnetic-free monodirectional plasma 
stream) to be as accurate a test of the reliabil- 
ity of the calculational method and as accurate 
a proposed geomagnetic field boundary as could 
be desired in the lighb of actual geophysical 
conditions. 

In view of the overwhelming forward pressure 
of the solar wind, modifications in the surface 
calculation introduced by weak interplanetary 
magnetic fields will be negligible on the part of 
the surface where the stream pressure is ap- 
preciable (n,.v - 1, the solar side); moreover, 
only minor modifications of the magnetic field 
in the region of the earth computed from these 
surface currents may be expected in view of the 
unchanged boundary position on the solar side, 
where the surface currents are large and close 
to the earth. Introduction of these higher-order 
effects into the calculations is difficult at present 
because of our lack of experimental knowledge 
of the interplanetary magnetic field and lack of 
theoretical knowledge of the behavior of a high- 
velocity plasma stream containing a trapped 
magnetic field when encountering an obstacle to 
its flow. Although pressure balance conditions 
will remain unchanged on the solar side, the 
antisolar shape of the boundary will be greatly 
affected and intuitively may be expected to close 
in a long raindrop-shaped tail rather than remain 
open as in the problem considered in this paper. 
These alterations in the position of very weak 
and very distant surface currents should have 
only a negligible effect on the distortion of the 
geomagnetic field of the earth within about 10 
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earth radii of the surface of the earth. Thus the 
present calculation furnishes an excellent basis 
for computation of the msgnetic field within the 
magnetosphere. The results, along with a number 
of applications, are presented in an accompanying 
paper [Mead, 19641. 
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